The Municipal Authority of Westmoreland County (MAWC) is committed to providing our consumers with a reliable and affordable supply of high-quality drinking water. We test our water using sophisticated equipment and advanced analytical procedures. MAWC water meets or exceeds state and federal standards for both appearance and safety. This annual "Consumer Confidence Report," required by the Safe Drinking Water Act, tells you where your water comes from, what we test shows about it, and other things you should know about drinking water.

AN EXPLANATION OF THE WATER QUALITY DATA TABLE

The table presented herein shows the results of our water-quality analyses. Every regulated contaminant that we detected in the water, even in the most minute traces, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health, the amount detected, the major sources of the contaminant, footnotes explaining the words and abbreviations used in the table. Many tests were conducted for other parameters including trace metals, pesticides, herbicides, and numerous organic chemicals such as industrial wastes and solvents. There was no detection of these contaminants. **MAWC does not fluoridate any of the water supplied from our treatment facilities.**

IMPORTANT DEFINITIONS

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminant.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectant to control microbial contamination.

Action Level (AL): The concentration of a contaminant which, if exceeded, may trigger additional treatment or other requirements which a water system must follow. **Treatment Technique (TT):** A water Treatment Process that is established by the EPA in lieu of an MCL if the EPA finds that it is not "economically technically feasible" to determine the level of the contamination. **UCMR:** Unregulated Contaminants, such as NDMA, are those that don’t have a drinking water standard set by USEPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard.

HEALTH INFORMATION

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline 800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- **Microbial contaminants,** such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants,** such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides,** which may come from a variety of sources such as agriculture, stormwater runoff, and residential uses.
- **Organic chemical contaminants,** including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- **Radioactive contaminants,** which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

PUBLIC PARTICIPATION

If you have questions or comments concerning the information presented in this report or other aspects of the MAWC’s operations, please contact John Ashton at 724/755-5920. Likewise, you may visit our website at www.mawc.org. Furthermore, the MAWC Board of Directors meets at noon on the second Thursday of each month at the New Stanton Office located at 124 Pool & Park Road New Stanton, PA 15672 unless otherwise publicized in the Pittsburgh / Greensburg Tribune-Review. MAWC Board meetings are open to the public.

SOURCE WATER INFORMATION

GEORGE R. SWEENEY WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>PWBSD: 5650002</th>
<th>Water Source: Beaver Run Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir Capacity: 11 Billion Gallons</td>
<td></td>
</tr>
<tr>
<td>Treatment Plant Capacity: 24 Million Gallons per Day</td>
<td></td>
</tr>
<tr>
<td>2011 Average Production: 19.1 Million Gallons per Day</td>
<td></td>
</tr>
</tbody>
</table>

MCKEESPORT WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>PWBSD: 5020025</th>
<th>Water Source: Youghiogheny River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Location: McKeesport, PA</td>
<td></td>
</tr>
<tr>
<td>Treatment Plant Capacity: 10 Million Gallons per Day</td>
<td></td>
</tr>
<tr>
<td>2011 Average Production: 6.3 Million Gallons per Day</td>
<td></td>
</tr>
</tbody>
</table>

INDIAN CREEK WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>PWBSD: 5260036</th>
<th>Water Source: Youghiogheny River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Location: Dunbar Township, Fayette County</td>
<td></td>
</tr>
<tr>
<td>Treatment Plant Capacity: 45 Million Gallons per Day</td>
<td></td>
</tr>
<tr>
<td>2011 Average Production: 22.0 Million Gallons per Day</td>
<td></td>
</tr>
</tbody>
</table>

FURNACE RUN WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>PWBSD: 56500031</th>
<th>Water Source: Mellon Wells/Furnace Run Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Location: Ligonier Twp.</td>
<td></td>
</tr>
<tr>
<td>Treatment Plant Capacity: 500,000 Gallons per Day</td>
<td></td>
</tr>
<tr>
<td>2011 Average Production: 0.492 Million Gallons per Day</td>
<td></td>
</tr>
</tbody>
</table>

SOURCE WATER ASSESSMENTS

Source Water Assessments were conducted for MAWC’s water intakes on the Youghiogheny River and Beaver Run Reservoir. The MAWC’s Indiana Creek and McKeesport Filtration Plants draw water from the Youghiogheny River and the George R. Sweeney Filtration Plant draws from the Beaver Run Reservoir. The assessments were completed by the Pennsylvania Department of Environmental Protection (PADEP) during calendar year 2002. The assessments found that the aforementioned water sources are potentially most susceptible to accidental spills along major transportation corridors, releases of raw and/or treated sewage, and stormwater runoff from developed and/or agricultural areas. Also, Beaver Run is potentially susceptible to the cumulative release of petroleum products from nearby tank farms. To review complete copies of the reports, please contact the PADEP Pittsburgh Regional Office, Records Management Unit at (412) 442-4000 or the MAWC at (724) 854-6500.
The Municipal Authority of Westmoreland County
2011 Annual Water Quality Report

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Beaver Run System</th>
<th>Date Tested</th>
<th>Detected Level</th>
<th>Range</th>
<th>Indian Creek System</th>
<th>Date Tested</th>
<th>Detected Level</th>
<th>Range</th>
<th>McKeesport System</th>
<th>Date Tested</th>
<th>Detected Level</th>
<th>Range</th>
<th>Furnace Run System</th>
<th>Date Tested</th>
<th>Detected Level</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemicals</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
<td>2010</td>
<td>0.13</td>
<td>(b)(d)</td>
<td></td>
<td>2010</td>
<td>0.15</td>
<td>(b)(d)</td>
<td></td>
<td>2010</td>
<td>0.16</td>
<td>(b)(d)</td>
<td></td>
<td>2010</td>
<td>0.18</td>
<td>(b)(d)</td>
<td></td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
<td>NO</td>
</tr>
<tr>
<td>Lead</td>
<td>ppm</td>
<td>15</td>
<td>0</td>
<td>2010</td>
<td>8.0</td>
<td>(d)</td>
<td></td>
<td>2010</td>
<td>2.3</td>
<td>(d)</td>
<td></td>
<td>2010</td>
<td>4.0</td>
<td>(b)(d)</td>
<td></td>
<td>2010</td>
<td>< 2.0</td>
<td>(b)(d)</td>
<td></td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
<td>NO</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>2011</td>
<td>2.50</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>0.85</td>
<td>ND</td>
<td></td>
<td>2011</td>
<td>0.52</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>1.00</td>
<td>(a)</td>
<td></td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Nitrite</td>
<td>ppm</td>
<td>1.0</td>
<td>0</td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>Mine discharge; Drilling waste; Copper smelting</td>
<td>NO</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>2011</td>
<td>0.043</td>
<td>(a)</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td></td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemicals</td>
<td></td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total trihalomethanes</td>
<td>ppm</td>
<td>80</td>
<td>0</td>
<td>2011**</td>
<td>32.7</td>
<td>21.0 - 42.2</td>
<td></td>
<td>2011**</td>
<td>34.4</td>
<td>10.88 - 66.0</td>
<td></td>
<td>2011</td>
<td>47.9</td>
<td>9.7 - 85.1</td>
<td></td>
<td>2011</td>
<td>4.6</td>
<td>0 - 6.6</td>
<td></td>
<td>By-product of drinking water chlorination</td>
<td>NO</td>
</tr>
<tr>
<td>HAA 5</td>
<td>ppm</td>
<td>60</td>
<td>0</td>
<td>2011**</td>
<td>17.1</td>
<td>14.5 - 17.1</td>
<td></td>
<td>2011**</td>
<td>16.7</td>
<td>9.0 - 25.5</td>
<td></td>
<td>2011</td>
<td>44.1</td>
<td>16.3 - 101.2</td>
<td></td>
<td>2011</td>
<td>0.3</td>
<td>0 - 1.2</td>
<td></td>
<td>By-product of drinking water chlorination</td>
<td>NO</td>
</tr>
<tr>
<td>I&SE Total Trihalomethanes</td>
<td>ppm</td>
<td>80</td>
<td>0</td>
<td>2008</td>
<td>24.9</td>
<td>13.3 - 32.7</td>
<td></td>
<td>2009</td>
<td>37.0</td>
<td>11.4 - 80.5</td>
<td></td>
<td>2009</td>
<td>37.0</td>
<td>11.4 - 80.5</td>
<td></td>
<td>2009</td>
<td>35.3</td>
<td>5.6 - 96.7</td>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>I&SE HAA 5</td>
<td>ppm</td>
<td>60</td>
<td>0</td>
<td>2008</td>
<td>12.2</td>
<td>0.0 - 19.0</td>
<td></td>
<td>2009</td>
<td>35.3</td>
<td>5.6 - 96.7</td>
<td></td>
<td>2009</td>
<td>35.3</td>
<td>5.6 - 96.7</td>
<td></td>
<td>2009</td>
<td>35.3</td>
<td>5.6 - 96.7</td>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Asphaltenes</td>
<td>ppm</td>
<td>3</td>
<td>0</td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td>2011</td>
<td>ND</td>
<td>(a)</td>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>TREATMENT TECHNIQUE</td>
<td></td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>0.3</td>
<td>0</td>
<td>2011</td>
<td>0.14</td>
<td>(c)</td>
<td></td>
<td>2011</td>
<td>0.1</td>
<td>(c)</td>
<td></td>
<td>2011</td>
<td>0.09</td>
<td>(c)</td>
<td></td>
<td>2011</td>
<td>0.1</td>
<td>(c)</td>
<td></td>
<td>Soil runoff</td>
<td></td>
</tr>
<tr>
<td>Bacteria</td>
<td>>5.0%</td>
<td></td>
<td></td>
<td>2011</td>
<td>A</td>
<td>0.069%</td>
<td></td>
<td>2011</td>
<td>A</td>
<td>0.14%</td>
<td></td>
<td>2011</td>
<td>A</td>
<td>0.0%</td>
<td></td>
<td>2011</td>
<td>A</td>
<td>0.0%</td>
<td></td>
<td>Artificially added</td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>range</td>
<td>range*</td>
<td>range*</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>range</td>
<td>Natural decaying matter</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- (a) Only one sample was required per monitoring period.
- (b) No samples were detected above action level.
- (c) 100% of samples in compliance.
- (d) Samples met 90% compliance.
- ND = None Detected
- A = Bacteria absent
- IDE = Initial Distribution System Evaluation
- 2011** = Reduced Monitoring Sampling
- * in months that the percent achieved was below required, there was no exceedance of the MCL because MAWC met alternative compliance criteria as required by the PA Safe Drinking Water Act.
A SPECIAL MESSAGE FOR PEOPLE WITH SEVERELY WEAKENED IMMUNE SYSTEMS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection Agency and The Centers for Disease Control and Prevention guidelines on appropriate means to lessen risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

FOR MORE INFORMATION, PLEASE CONTACT:
- Your doctor or other healthcare provider.
- Centers for Disease Control and Prevention at (800) 342-2437; or on-line at http://www.cdc.gov/ncidod/dpd/parasites/cryptosporidiosis/default.htm
- United States Environmental Protection Agency's Drinking Water Hotline at (800) 426-4791
- Pennsylvania Department of Environmental Protection at (412) 442-4000 or on-line at http://www.dep.state.pa.us/dep/deputate/watermgmt/WSM/WSM—DWM/Complian/Protozoa.htm

SAFEGUARD YOUR DRINKING WATER SUPPLY

The Municipal Authority of Westmoreland County encourages all of our employees and customers to become security conscious and assist in protecting our drinking water resources and infrastructure.

DRINKING WATER DISINFECTION

The Indian Creek and George R. Sweeney Water Plants switch their disinfection residual from Chloramines (a combination of chlorine and ammonia) to Free Chlorine (100% chlorine) every year from early October to late November. This switch is necessary to maintain proper bacteriological quality of our drinking water. Customers may notice a chlorine taste in the water during this period.

The chloramination process combines ammonia and chlorine to form chloramines. Specifically, ammonia and chlorine are mixed in carefully controlled concentrations to maximize their disinfection potential and minimize the production of DBPs in your drinking water. Also, chloramines provide a stable residual throughout MAWC's distribution system that inhibits the growth of bacteria in pipelines and water storage tanks. An additional benefit of chloramination is the reduction of the chlorine smell and taste of your tap water.

Required Consumer Confidence Report (CCR) statement addressing Lead in Drinking Water

"If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MAWC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."
The MAWC is required to implement and enforce a cross connection/backflow prevention program in accordance with the Pennsylvania’s Safe Drinking Water Act. Specifically, 25 PA Code Chapter 109 mandates that:

PA Title 25 Section 109.709

(a) No person may introduce contaminants into a public water supply through a service connection of a public water system.

(1) It shall be the responsibility of the customer to eliminate cross-connection or provide backflow devices to prevent contamination of the distribution system from both backsiphonage and backpressure. Individual backflow preventers shall be acceptable to the public water supplier.

(2) If the customer fails to comply with paragraph (1) within a reasonable period of time, the water supplier shall discontinue service after reasonable notice has been made to the customer.

RESIDENTIAL CUSTOMERS: Installation of a dual check valve for backflow prevention is required by the Safe Drinking Water Act. This will create a closed system within your home and may require the installation of an overflow tank on your hot water tank, or the installation of a thermal expansion relief valve. Please consider this when you are preparing your plumbing for municipal water.

ALL ASSEMBLIES AND/OR DEVICES INSTALLED MUST BE ASSE APPROVED:

1013: Reduced Pressure Backflow Assembly (RPBA)
1015: Double Check Valve Assembly (DCVA)
1024: Dual Check Backflow Preventer
1047: Reduced Pressure Detector Backflow Assembly (RPDA)
1048: Double Check Valve Detector Assembly (DCDA)

INSTALLATIONS

All assemblies and/or devices should be horizontal. Other positions as approved by the Water Authority. Follow Authority guidelines for location of backflow preventer and any valving required.

Dual Check Valves - Residential

- Residential only, inside building or underground meter pit

FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS, ALL INSTALLATION AND/OR MAINTENANCE WORK MUST BE DONE BY A CERTIFIED BACKFLOW CONTRACTOR OR SPECIALIST.

Reduced Pressure Assemblies (RPBA) – Commercial and Industrial

- Above ground heated enclosures preferred
- Underground vault not permitted
- Inside heated building
- Accessible for testing and repair
- Not to be installed in residential unless approved by Authority
Double Check Valve Assembly (DCVA)-Commercial and Industrial

- Underground vault permitted
- Above ground heated enclosures permitted
- Inside heated building
- Residential use permitted

TESTING

Methods:

New England Waterworks Association
American Society of Sanitary Engineering
Others as approved by Authority

Frequency:

Industrial - RPBA, once each year. Test due date based on installation date.
Commercial - DCVA or RPBA, once each year. Test due date based on installation date.
Residential - Dual Check and/or DCVA, visual check and/or test to coincide with meter maintenance. Change-out subject to manufacturer's recommendation

The Authority must assign a "Degree of Hazard" to all accounts. This "Degree of Hazard" will determine the type of backflow protection needed. The following steps will assure that there will be no interruption of service to any of our customers and water quality will not be compromised.

1. **High Hazard** – Will be determined by the Authority and will need to install Reduced Pressure Backflow Assembly (RPBA)

2. **Low Hazard** – Will be determined by the Authority and will need to install Double Check Valve Assembly (DCVA).

3. To avoid service interruptions, a parallel set, or twin set, of backflow devices should be used. These will consist of two (2) Pressure Reducing Valves (PRVs), two (2) Meters and two (2) Backflow Assemblies.

4. If the customer chooses to use only one (1) set of backflow devices, both customer and the Authority must sign an agreement as such. If test on this assembly fails, water must remain off until corrected.

5. All backflow assemblies must be approved by the Authority.

Please visit the Municipal Authority of Westmoreland County's website at www.mawc.org to update the backflow information we have for your account. On the "Backflow Prevention Assembly Test & Maintenance Form" please include the serial number of the water meter that the device protects. You can find the forms on our website along with more information on backflow prevention, diagrams, and excerpts from the Environmental Protection Agency.