Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo o hable con alguien que lo entienda bien. (This report contains very important information about your drinking water. Translate it, or speak to someone who understands it.)

To view the Annual Water Quality Report electronically please go to http://www.mawc.org/CCR.
The Municipal Authority of Westmoreland County unveiled its $130 million reinvestment plan earlier this year, in keeping with past capital spending that totals more than $425 million over the last 15 years.

Over the next five years, MAWC will be replacing over 40 miles of aging pipeline, upgrading and replacing 5 pump stations, installing 14 Million Gallons per Day of additional treatment capacity, incorporating energy saving motors to reduce power costs, installing back-up generators at treatment plants for increased reliability, recoating and maintaining 15 storage tanks and making additional improvements to the water and wastewater treatment facilities to maintain treatment objectives and meet upcoming regulations.

This additional work will be done to continue to provide cost effective and reliable service to our more than 125,000 water customers and almost 11,000 wastewater customers. MAWC water is still among the least expensive regional systems, at $40.46 per month or $485 annually for an average water bill.

“This is a prudent investment with projects we can accomplish in the five year time frame. We made this plan with our customers’ needs for safe and reliable drinking water in mind, along with their understandable need for an affordable rate.” said MAWC Resident Manager Christopher H. Kerr

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection Agency and The Centers for Disease Control and Prevention guidelines on appropriate means to lessen risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

FOR MORE INFORMATION, PLEASE CONTACT:
- Your doctor or other healthcare provider.
- Centers for Disease Control and Prevention at (800) 342-2437; or on-line at http://www.cdc.gov/ncidod/dpd/parasites/cryptosporidiosis/default.htm
- United States Environmental Protection Agency's Drinking Water Hotline at (800) 426-4791
- Pennsylvania Department of Environmental Protection at (412) 442-4000 or on-line at http://www.dep.state.pa.us/dep/deputate/watermgt/WSM/WSM—DWM/Complian/Protozoa.htm

REPORT SUSPICIOUS ACTIVITY

A SPECIAL MESSAGE FOR PEOPLE WITH SEVERELY WEAKENED IMMUNE SYSTEMS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection Agency and The Centers for Disease Control and Prevention guidelines on appropriate means to lessen risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

FOR MORE INFORMATION, PLEASE CONTACT:
- Your doctor or other healthcare provider.
- Centers for Disease Control and Prevention at (800) 342-2437; or on-line at http://www.cdc.gov/ncidod/dpd/parasites/cryptosporidiosis/default.htm
- United States Environmental Protection Agency’s Drinking Water Hotline at (800) 426-4791
- Pennsylvania Department of Environmental Protection at (412) 442-4000 or on-line at http://www.dep.state.pa.us/dep/deputate/watermgt/WSM/WSM—DWM/Complian/Protozoa.htm

REPORT SUSPICIOUS ACTIVITY

REPORT SUSPICIOUS ACTIVITY

REPORT SUSPICIOUS ACTIVITY

REPORT SUSPICIOUS ACTIVITY

DRINKING WATER DISINFECTION

The Indian Creek and George R. Sweeney Water Plants switch their disinfection residual from Chloramines (a combination of chlorine and ammonia) to Free Chlorine (100% chlorine) every year from mid-October to June 1st. This switch is necessary to maintain proper bacteriological quality of our drinking water. Customers may notice a chlorine taste in the water during this period.

The chloramination process combines ammonia and chlorine to form chloramines. Specifically, ammonia and chlorine are mixed in carefully controlled concentrations to maximize their disinfection potential and minimize the production of DBPs in your drinking water. Also, chloramines provide a stable residual throughout MAWC’s distribution system that inhibits the growth of bacteria in pipelines and water storage tanks. An additional benefit of chloramination is the reduction of the chlorine smell and taste of your tap water.

GET THE FACTS

FOR EMERGENCIES: 724-755-5836
FOR MORE INFORMATION: 724-755-5932
www.epa.gov/safewater/security

Required Consumer Confidence Report (CCR) statement addressing Lead in Drinking Water

"If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MAWC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."
THE MUNICIPAL AUTHORITY OF WESTMORELAND COUNTY 2015 ANNUAL WATER QUALITY REPORT

INORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNIT</th>
<th>MCL</th>
<th>MCLG</th>
<th>DATE TESTED</th>
<th>DETECTED LEVEL</th>
<th>RANGE</th>
<th>MAJOR SOURCES</th>
<th>VIOLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
<td>2013</td>
<td>0.12</td>
<td><0.1</td>
<td>2013</td>
<td>0.16</td>
<td><0.1</td>
<td>2013</td>
<td>0.14</td>
<td><0.1</td>
<td>2013</td>
<td>0.14</td>
<td><0.1</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives.</td>
<td>NO</td>
</tr>
<tr>
<td>Chlorate (E.P.)</td>
<td>ppb</td>
<td>15</td>
<td>0</td>
<td>2013</td>
<td>1.8</td>
<td><2.0</td>
<td>2013</td>
<td>2.0</td>
<td><2.0</td>
<td>2013</td>
<td>1.8</td>
<td><2.0</td>
<td>2013</td>
<td>2.0</td>
<td><2.0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits. Leaching from wood preservatives.</td>
<td>NO</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>10</td>
<td>0</td>
<td>2015</td>
<td>0.80</td>
<td><0.1</td>
<td>2015</td>
<td>0.80</td>
<td><0.1</td>
<td>2015</td>
<td>0.80</td>
<td><0.1</td>
<td>2015</td>
<td>0.80</td>
<td><0.1</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, seepage; Erosion of natural deposits.</td>
<td>NO</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>0</td>
<td>2015</td>
<td>0.037</td>
<td><0.0</td>
<td>2015</td>
<td>0.037</td>
<td><0.0</td>
<td>2015</td>
<td>0.037</td>
<td><0.0</td>
<td>2015</td>
<td>0.037</td>
<td><0.0</td>
<td>Mine drainage; drilling waste; copper smelting</td>
<td>NO</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4</td>
<td>0</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>Naturally occurring; aluminum and fertilizer factory discharge</td>
<td>NO</td>
</tr>
<tr>
<td>Mercury</td>
<td>ppm</td>
<td>2</td>
<td>0</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>Emission from steel mills; runoff from fertilizer use</td>
<td>NO</td>
</tr>
<tr>
<td>Nickel</td>
<td>ppm</td>
<td>0.1</td>
<td>0.1</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2014</td>
<td>0.002</td>
<td>ND</td>
<td>2014</td>
<td>0.002</td>
<td>ND</td>
<td>Manufacturing by-product; runoff from fertilizer use</td>
<td>NO</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppm</td>
<td>0.1</td>
<td>0.1</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2015</td>
<td>ND</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>ND</td>
<td>2014</td>
<td>ND</td>
<td>ND</td>
<td>Decay of arsenic cement and water mains; emission of natural deposits.</td>
<td>NO</td>
</tr>
</tbody>
</table>

ORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNIT</th>
<th>LEVEL</th>
<th>RANGE</th>
<th>DATE TESTED</th>
<th>DETECTED LEVEL</th>
<th>RANGE</th>
<th>MAJOR SOURCES</th>
<th>VIOLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSA</td>
<td>ppm</td>
<td>NA</td>
<td>ND</td>
<td>2009</td>
<td>0.0022</td>
<td>ND</td>
<td>2009</td>
<td>0.0022</td>
<td>ND</td>
<td>2011</td>
<td>ND</td>
<td>ND</td>
<td>2012</td>
<td>ND</td>
<td>ND</td>
<td>Chloramine by-product</td>
<td>NO</td>
</tr>
</tbody>
</table>

WATER QUALITY TABLE FOOTNOTES

(a) Only one sample was required per monitoring period. (b) No samples were detected above action level. (c) 100% of samples in compliance. (d) Samples met 90th percentile compliance. (e) MCL for <40 samples = 1.0 ppb. **ND** = None Detected A = Bacteria absence, IDE = Initial Distribution System, UCMR3 = Unregulated Contaminants Monitoring Regulations pt.3, TA = at least 95% of monthly samples < 0.3 tnu for 9/15. Highest recorded value of 0.3 on 9/8/15 MRDL = Maximum Residual Disinfectant Level. **NE** = No MCL or MCLG established, pCi/L = picoCurie per liter, ug/l = micrograms per liter, ppm = parts per million, ppb = parts per billion, **MFL** = microfibers per liter, **NTU** = Nephelometric Turbidity Units, **E.P.** = Entry Point, **Max D** = Maximum Distribution, **RAA** = Running Annual Average, **MinRDL** = Minimum Residual Disinfectant Level.
The Municipal Authority of Westmoreland County (MAWC) is committed to providing our consumers with a reliable and affordable supply of high-quality drinking water. We test our water using sophisticated equipment and advanced analytical procedures. MAWC water meets or exceeds state and federal standards for both appearance and safety. This annual “Consumer Confidence Report,” required by the Safe Drinking Water Act, tells you where your water comes from, what our tests show about it, and other things you should know about drinking water.

AN EXPLANATION OF THE WATER-QUALITY DATA TABLE

The table presented herein shows the results of our water-quality analyses. Every regulated contaminant that we detected in the water, even in the most minute traces, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health, the amount detected, the major sources of the contaminants, footnotes explaining the words and abbreviations used in the table. Many tests were conducted for other parameters including trace metals, pesticides, herbicides, and numerous organic chemicals such as industrial wastes and solvents. MAWC does not fluoridate any of the water supplied from our treatment facilities. The water supplied to the Ligonier service area that is supplied from the Greater Johnstown Water Authority is fluoridated.

IMPORTANT DEFINITIONS

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum Residual Disinfectant Level Goal (MRDLG): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminant. Maximum Residual Disinfectant Level Goal (MRDL): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectant to control microbial contamination. Action Level (AL): The concentration of a contaminant which, if exceeded, may trigger additional treatment or other requirements which a water system must follow. Treatment Technique (TT): A water Treatment Process that is established by the EPA in lieu of an MCL if the EPA finds that it is not “economically technically feasible” to determine the level of the contamination. UCMR: Unregulated Contaminants, such as NDMA, are those that don’t have a drinking water standard set by USEPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard.

HEALTH INFORMATION

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline 800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.

(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

PUBLIC PARTICIPATION

If you have questions or comments concerning the information presented in this report or other aspects of the MAWC’s operations, please contact John Ashton at 724-755-5920. Likewise, you may visit our web site at www.mawc.org. Furthermore, the MAWC Board of Directors meets at noon on the second Wednesday of each month at the New Stanton Office located at 124 Pool & Park Road New Stanton, PA 15672 unless otherwise publicized in the Pittsburgh / Greensburg Tribune-Review. MAWC Board meetings are open to the public.

SOURCE WATER INFORMATION

GEORGE R. SWEENEY WATER TREATMENT PLANT

- **Water Source:** Youghiogheny River
- **Reservoir Capacity:** 11 Billion Gallons
- **Treatment Plant Capacity:** 24 Million Gallons per Day
- **2015 Average Production:** 18.9 Million Gallons per Day

MCKEESCOPT WATER TREATMENT PLANT

- **Water Source:** Youghiogheny River
- **Intake Location:** McKeesport, PA
- **Treatment Plant Capacity:** 10 Million Gallons per Day
- **2015 Average Production:** 6.8 Million Gallons per Day

INDIAN CREEK WATER TREATMENT PLANT

- **Water Source:** Youghiogheny River
- **Intake Location:** Dunbar Township, Fayette County
- **Treatment Plant Capacity:** 40 Million Gallons per Day
- **2015 Average Production:** 24.9 Million Gallons per Day

Ligonier Distribution System

- **Water Source:** Greater Johnstown Water Authority
- **Intake Location:** Ligonier Twp.
- **Capacity:** 3,000,000 Gallons per Day
- **2015 Average Production:** 0.39 Million Gallons per Day

SOURCE WATER ASSESSMENTS

Source Water Assessments were conducted for MAWC’s water intakes on the Youghiogheny River and Beaver Run Reservoir. The MAWC’s Indian Creek and McKeesport Filtration Plants draw water from the Youghiogheny River and the George R. Sweeney Filtration Plant draws from the Beaver Run Reservoir. The assessments were completed by the Pennsylvania Department of Environmental Protection (PADEP) during calendar year 2002. The assessments found that the aforementioned water sources are potentially most susceptible to accidental spills along major transportation corridors, releases of raw and/or under treated sewage, and stormwater runoff from developed and/or agricultural areas. Also, Beaver Run is potentially susceptible to the cumulative release of petroleum products from nearby tank farms. To review complete copies of the reports, please contact the PADEP Pittsburgh Regional Office, Records Management Unit at (412) 442-4000 or the MAWC at (724) 834-6500.
The MAWC is required to implement and enforce a cross connection/backflow prevention program in accordance with the Pennsylvania’s Safe Drinking Water Act. Specifically, 25 PA Code Chapter 109 mandates that:

PA Title 25 Section 109.709

a) No person may introduce contaminants into a public water supply through a service connection of a public water system.
 (1) It shall be the responsibility of the customer to eliminate cross-connection or provide backflow devices to prevent contamination of the distribution system from both backsiphonage and backpressure. Individual backflow preventers shall be acceptable to the public water supplier.
 (2) If the customer fails to comply with paragraph (1) within a reasonable period of time, the water supplier shall discontinue service after reasonable notice has been made to the customer.

RESIDENTIAL CUSTOMERS: Installation of a dual check valve for backflow prevention is required by the Safe Drinking Water Act. This will create a closed system within your home and may require the installation of an overflow tank on your hot water tank, or the installation of a thermal expansion relief valve. Please consider this when you are preparing your plumbing for municipal water.

ALL ASSEMBLIES AND/OR DEVICES INSTALLED MUST BE ASSE APPROVED:
1013: Reduced Pressure Backflow Assembly (RPBA)
1015: Double Check Valve Assembly (DCVA)
1024: Dual Check Backflow Preventer
1047: Reduced Pressure Detector Backflow Assembly RPDA
1048: Double Check Valve Detector Assembly (DCDA)

INSTALLATIONS- All assemblies and/or devices should be horizontal. Other positions as approved by the Water Authority. Follow Authority guidelines for location of backflow preventer and any valving required.

Dual Check Valves -Residential
· Residential only, inside building or underground meter pit
Except for residential properties that have irrigation systems, swimming pools, operating a home business, or any fire prevention system. These four exceptions need to contact the authority to determine the needed backflow device.

FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS, ALL INSTALLATION AND/OR MAINTENANCE WORK MUST BE DONE BY A CERTIFIED BACKFLOW CONTRACTOR OR SPECIALIST.

Reduced Pressure Assemblies (RPBA) –Commercial and Industrial
· Above ground heated enclosures preferred
· Underground vault not permitted
· Inside heated building
· Accessible for testing and repair
· Not to be installed in residential unless approved by Authority

Double Check Valve Assembly (DCVA)-Commercial and Industrial
· Underground vault permitted
· Above ground heated enclosures permitted
· Inside heated building
· Residential use permitted
TESTING

Methods:
New England Waterworks Association
American Society of Sanitary Engineering
Others as approved by Authority

Frequency:

Industrial - RPBA, once each year. Test due date based on installation date.

Commercial - DCVA or RPBA, once each year. Test due date based on installation date.

Residential - Dual Check and/or DCVA, visual check and/or test to coincide with meter maintenance. Change-out subject to manufacturer’s recommendation.

The Authority must assign a “Degree of Hazard” to all accounts. This “Degree of Hazard” will determine the type of backflow protection needed. The following steps will assure that there will be no interruption of service to any of our customers and water quality will not be compromised.

1. **High Hazard** – Will be determined by the Authority and will need to install Reduced Pressure Backflow Assembly (RPBA)
2. **Low Hazard** – Will be determined by the Authority and will need to install Double Check Valve Assembly (DCVA)
3. To avoid service interruptions, a parallel set, or twin set, of backflow devices should be used. These will consist of two (2) Pressure Reducing Valves (PRVs), two (2) Meters and two (2) Backflow Assemblies.
4. If the customer chooses to use only one (1) set of backflow devices, both customer and the Authority must sign an agreement as such. If test on this assembly fails, water must remain off until corrected.
5. All backflow assemblies must be approved by the Authority.

Please visit the Municipal Authority of Westmoreland County’s website at www.mawc.org to update the backflow information we have for your account. On the “Backflow Prevention Assembly Test & Maintenance Form” please include the serial number of the water meter that the device protects. You can find the forms on our website along with more information on backflow prevention, diagrams, and excerpts from the Environmental Protection Agency.
<table>
<thead>
<tr>
<th>Township</th>
<th>Borough</th>
<th>Township</th>
<th>Borough</th>
<th>Township</th>
<th>Borough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegheny Township</td>
<td>Arona Borough</td>
<td>Adamsburg Borough</td>
<td>Duquesne (City)</td>
<td>High Acres</td>
<td></td>
</tr>
<tr>
<td>Apollo Borough</td>
<td>Bullskin Township</td>
<td>Derry Township</td>
<td>McKeesport (City)</td>
<td>Laurel Mountain Borough</td>
<td></td>
</tr>
<tr>
<td>Avonmore Borough</td>
<td>Connellsville</td>
<td>Hempfield Township</td>
<td>Port Vue Borough</td>
<td>Laughlintown</td>
<td></td>
</tr>
<tr>
<td>Bell Township</td>
<td>Connelsville Township</td>
<td>Herminie (Part of Sewickley Township)</td>
<td>Versailles Borough</td>
<td>Ligonier Borough</td>
<td></td>
</tr>
<tr>
<td>Conemaugh Township</td>
<td>Dawson Borough</td>
<td>Irwin Borough</td>
<td>White Oak Borough</td>
<td>Ligonier Township</td>
<td></td>
</tr>
<tr>
<td>Delmont Borough</td>
<td>East Huntington Township</td>
<td>Jeannette City</td>
<td></td>
<td>Fairfield Twp.</td>
<td></td>
</tr>
<tr>
<td>East Vandergrift Borough</td>
<td>Everson Borough</td>
<td>Manor Borough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export Borough</td>
<td>Forward Township</td>
<td>New Alexandria Borough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin Township</td>
<td>Greensburg City</td>
<td>North Huntingdon Township</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyde Park Borough</td>
<td>Hunker Borough</td>
<td>North Irwin Borough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiskiminetas Township</td>
<td>Madison Borough</td>
<td>Penn Borough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leechburg Borough</td>
<td>Mount Pleasant Borough</td>
<td>Salem Township</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loyalhanna Township</td>
<td>Mount Pleasant Township</td>
<td>Sewickley Township</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipality of Murrysville Borough</td>
<td>New Stanton Borough</td>
<td>South Versailles Borough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Apollo Borough</td>
<td>North Versailles Borough</td>
<td>Unity Township</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma Borough</td>
<td>Perry Township</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parks Township</td>
<td>Rostraver Township</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penn Township</td>
<td>Scottdale Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saltsburg</td>
<td>Smithton Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandergrift Borough</td>
<td>South Connellsville Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington Township</td>
<td>South Greensburg Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Leechburg Borough</td>
<td>Southwest Greensburg Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burrell Twp.</td>
<td>South Huntington Township</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suttersville Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Tyrone Township</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Newton Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Youngwood Borough</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FREQUENTLY ASKED QUESTIONS IN CUSTOMER SERVICE

1. What to do if my consumption is higher than normal and my meter is outside in a ground box?

Start by checking for a toilet leak. Do this test at night or when you are out of the home for several hours. Color the water tank of the toilet with food coloring, coffee, cola, etc. First thing in the morning or when you arrive home (before water is used) check the bowl of the toilet. If the color shows in the bowl, you have a toilet leak. Do this test to all of the toilets in the home.

If you do not find a problem with the toilets in your home, you may have a service line leak. Our customer service staff can send a service person out to take a meter reading to determine the amount of consumption that went through the meter since your bill was generated. If the service person determines a large amount of consumption, you may need to contact a plumber for further investigation of the problem.

2. If my consumption is higher than normal what can I do to see if I have an internal problem?

You can take a meter reading. Again you want to do this test at night or when you are out of the home for several hours. Take a read from the meter and write down all digits from left to right. First thing in the morning or when you arrive home, take another meter reading. Again you will want to write down all digits from left to right. If no one used water, the read should be the same. If the read is different and no one used water, you have an internal problem.

3. How much water does a leaking faucet waste?

Check your faucets at home – do any of them drip? Well, maybe it is just a small drip – how much water can a little drip waste? There is no scientific definition of the volume of a faucet drip, but after measuring a number of kitchen and bathroom sink faucets, the volume seems to be between 1/5th and 1/3rd of a milliliter (mL). Drips from bathroom tubs come in a bit more, though, at about 1/2mL. So, for our calculations below (numbers are rounded), we are going to use 1/4mL as the volume of a faucet drip. So, by these drip estimates:

- One gallon – 15,140 drips
- One liter – 4,000 drips
4. **How much water can a “running” toilet waste?**

A running toilet can waste two gallons of water per minute. A silent leak in a toilet can waste up to 7,000 gallons of water per month. Regularly check the flaps inside your toilet tank to make sure that they are sealing properly.

5. **What to do if I have a sulfur smell when I run my water in my sink?**

This might not be your water at all. It may be your sewer drains. Sewer gas comes up thru the trap when you turn the water on. This will occur in any faucet that you turn on in the house. To check, pour a glass of water from the faucet and move to the next room. If the smell goes away, you know it is the sewer drains. Run water periodically down your drains. A dry drain will start to smell.

6. **How to protect your meter from freezing?**

Outdoors:
- Disconnect and drain the garden hose when not in use.
- Close all outside vents, crawl spaces and doors so cold air doesn’t seep inside.
- Fix broken windows and seal cracks in the walls.
- If your water meter is in a ground box, fill the pit from the meter to the lid with pink batting insulation. The meter should be exposed in order for the meter to be read. The insulation helps to keep natural ground heat in the meter pit and around the meter.

Indoors:
- Wrap the meter and water lines in commercial insulation. Pipes subject to cold or freezing temperatures can be wrapped in heat tape, which is available at most local hardware stores.
- Make sure the shutoff valves on either side of the water meter are working properly. Place a tag on the main shutoff valve and make sure everyone in the house knows where it is and how to operate it in case of an emergency.
- If you have had pipes/water meter freeze in the past, you may want to keep a trickle of water running from the highest faucet in your house. You will be billed for the water used, but this may help prevent more costly plumbing repairs that result from broken pipes/water meter.

If you won’t be home:
- If you’re going away for an extended period, keep the heat on low inside the house. This will help protect the pipes in the event the temperature drops.
- Make sure that your inside shut off valve is off, contact MAWC to shut your water off at the street. This will stop your billing and protect your pipes/water meter from freezing. There is no charge for this service.
- If you plan to turn the heat off, be sure to drain all the water from the pipes, toilets and water heater, and turn off the power source to the water heater.
FREQUENTLY ASKED QUESTIONS

Q. Is Fluoride added to MAWC water?
A. MAWC does not add fluoride to the water that is produced at our three (3) water treatment plants. The water that MAWC receives from Greater Johnstown Water Authority to supply the Ligonier service area does contain fluoride.

Q. Why does my drinking water sometimes look cloudy when first taken from a faucet and then clear up?
A. The cloudy water is caused by tiny air bubbles in the water similar to the gas bubbles in carbonated soft drinks. AFTER a while, the bubbles rise to the top and are gone. This type of cloudiness occurs more often in the winter because the colder water holds more dissolved air. Air can be introduced into the water after pipe repairs or other service disruptions. Call customer service for a main line flush if air is excessive after a leak.

Q. There is a “pink slime” in my shower. Is it from the water?
A. No, certain species of airborne bacteria gravitate towards and thrive in a moist environment, such as showers, toilet bowls, sink drains, tiles and dog dishes. These bacteria are naturally occurring and unattractive, but are generally harmless. The best way to avoid this problem is to keep the surfaces free from bacterial film through regular cleaning using Lysol or a chlorine-based product.

Q. Is there anything I can do to eliminate the chlorine taste in my water?
A. Yes, place a pitcher of water in your refrigerator for cool, fresh water anytime. Chlorine will dissipate with time and the water will taste fresh. Reverse Osmosis and activated carbon filters are also effective in removing chlorine from water, but choose a reputable vendor and be sure to follow the manufacturer’s instructions for installation and maintenance.

Q. Why does the water have a “chlorine” smell in the winter time?
A. MAWC adds chlorine to the drinking water to prevent water-borne disease outbreaks such as cholera, typhoid, giardiasis, etc. The chlorine must remain in the water for its entire journey to your spigot. In the summertime MAWC combines ammonia with the chlorine to help carry the chlorine over the entire distribution system and reduce taste and odors caused by the warmer water. In the winter, MAWC eliminates the ammonia and adds only chlorine to the water. This chlorine eliminates any free ammonia in the system which left unchecked can cause bacterial growth. This “free” chlorine residual creates the off odors that you smell.

Q. What are the black spots, rings or lines in toilets and shower stalls?
A. Mold and mildew grows in places that are continually damp and is treated the same as the pink slime.